

Testing Scenarios for Assessing Human Performance in Take-over Situations

MOTIVATION

- The changing role of the driver in conditionally automated driving brings along multiple new research questions from a human factors perspective
- In order to evaluate human performance in take-over situations the design of the testing scenario is essential
- Clear guidance on how to specify suitable testing scenarios is missing

TAXONOMY OF TESTING SCENARIOS

Within Ko-HAF we identified 4 main factors determining driver's response and behavior:

Urgency

How much time is available to intervene?

Predictability

How predictable is the take-over situation?

Criticality

How severe are the consequences if the driver does not take-over in time?

Drivers' Response

How complex is the required driver intervention?

All factors were scored from 1 (=low) to 3 (high) for various testing scenarios

CLASSIFICATION OF DIFFERENT TESTING SCENARIOS

No.	Name	Urgency	Predictability	Criticality	Driver Response
1	Sensor Failure (Subsystem)	1	1	1	1
2	Sensor Failure (Total)	3	1	2-3	1-2
3	End of Highway	1	3	1-2	1-2
4	Lane change to deceleration lane not possible (e.g. because of traffic on target lane)	2	2	1	3
5	Lane change from entrance ramp not possible	3	2	2	3
6	Road narrows (known from backend)	1	3	2	2
7	Road narrows (detected by on-board sensors)	3	1	2	2
8	Danger zone / obstacle ahead (known from backend)	1	3	1-3	1-3
9	Danger zone / obstacle ahead (detected by on- board sensors)	3	1	1-3	1-3
10	Loss of reference signals (e.g. lane markings missing)	3	1	2-3	1
11	Predictable loss of reference signals (known from backend)	1	3	2-3	1

CLASSIFICATION OF DIFFERENT TESTING SCENARIOS

Depending on the research focus, testing scenarios should be adjusted according to the following classification.

according to the following classification:								
	Urgency	Predictability	Criticality	Driver Response				
Human performance limits	High	Low	High	Medium-high				
Time demand for unplanned transitions	Medium	Low	Low	Low-high				
Driver comfort for planned transitions	Low	High	Low	Low				

Ko-HAF work on the selection and design of test scenarios is continued in the context of ISO 21959 Part 2.

Gold, Christian & Naujoks, Frederik & Radlmayr, Jonas & Bellem, Hanna & Jarosch, Oliver. (2017). Testing Scenarios for Human Factors Research in Level 3 Automated Vehicles. 551-559. 10.1007/978-3-319-60441-1_54.

Bundesministeri für Wirtschaft und Energie

Gefördert durch:

und Energie