

Motion Pattern Recognition for Lane Change Prediction

OBJECTIVE

- Forward-looking maneuver planning for safe & comfortable HAD driving
 HAD vehicle must be able to detect & anticipate human driving behavior
- Early lane change detection to recognize cut-in maneuvers

APPROACH

- Create a memory: Learn typical lane change courses from real highway data
- Prediction: Compare driving behavior of traffic participants with learned prototypes and utilize best match for maneuver classification and motion prediction

Algorithm Agglomerative hierarchical

RESULTS

 Average prediction time ΔT of a lane change maneuver is 1.65 s before lane crossing

Approach		TPR	prc	F_1	ΔT (s)	Misclassification LCL LK LCR		ation LCR
A	LCL LCR	$\begin{array}{c} 0.95 \\ 0.87 \end{array}$	$\begin{array}{c} 1.0 \\ 0.97 \end{array}$	$0.976 \\ 0.916$	1.65	0.16	0.09	0.23

Example of an online-detected lane change maneuver of traffic object 1.

[1] Augustin, D., Hofmann, M. and Konigorski, U. (2018), Motion Pattern Recognition for Maneuver Detection and Trajectory Prediction on Highways

www.ko-haf.de

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages