

Effects of prolonged automated driving on take-over performance

MOTIVATION

Longer automated drives could lead to an increase in drowsiness and fatigue.

RESULTS

Driver state: longer automated driving has a

What effects can be seen resulting from longer automation on driver state and how do they affect the take-over performance in different scenarios compared to a **manual baseline**?

METHOD

- Driving simulator (static) study
- n = 57, mean = 33 years (SD = 13y)

Experimental design

Between subject factors: group (level of automation and traffic density)

	Automation level	Traffic density
HADO	HAD	0 Veh./km
HAD20		20 Veh./km
Manual	Manual	

Within subject factor:

significant influence on

- Eyes on Road Rate (EOR)
- Pupil diameter
- Center of Pressure (COP) (activity of the driver)

Measures

Vehicle

dynamics

Significant differences between the take-over situations concerning

- Minimum longitudinal acceleration
- Maximum lateral acceleration
- Take-over time

Minimal longitudinal acceleration

HAD0 HAD20 Manual

SUMMARY

Prolonged automated driving (30 min)

- significantly influences the driver state,
- but does not affect take-over performance.

Technische Universität München

Jonas Radlmayr

www.ko-haf.de

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages