

Highly Automated Driving – Validation and Test

Johannes Vetter, Continental Safety Engineering International GmbH

Table of Contents

- Methods
- Testspecification
- Testtools
 - Vehicle test (real world / proving ground)
 - "TestAssist" Conti Safety
 - "TestManager" IfF TUBS
 - Simulation
 - Simulation as a Tool Conti Teves
 - Sensor Validation BMW
 - Cooperative Simulation Opel
- Assessment (real world data)

Project Ko-HAF

Overall Methodology

© Project Ko-HAF

Scenario Development

Test-Case Identification

Test Procedure

Testspecification

Example from Test Catalog

12	3	A	В	с	D	E	F	G	н	I	J	K
	1 2	KOMENTER	HAF	t i i i i i i i i i i i i i i i i i i i				AP5 Absicherung - Erprobung und Validierung UAP5.2 Testprozedur			Testfälle: 74	V3.3 30.05.2018
	3						Testkatalog					
			TF-ID	Тур	Rahmenbedingung			Beschreibung	Wert	Einheit	Umgebung	Kommentar
	4	TK 112	1.1	Teetfell				Auffeliet eine Manuefelien den in			Dellifere i Kingdon	
	82	16_1.1.5	1.1	restian	Def Beol. 30m Start Reny Cm			ausreichend große Lücke			TestAssist	
+	83	TK_1.1.3	1.1.1	Szenerie Element	Rampe							
+	88	TK_1.1.3	1.1.2	Szenerie Element	Beschleunigungssteifen							
+	93	TK_1.1.3	1.1.3	Szenerie Element	Durchgehender Fahrstreifen							
+	96	TK_1.1.3	1.1.4	Szenerie Element	Verkehrsregelung							
-	100	TK_1.1.3	1.1.5	Dynamisches Element	Verkehr							
T.	101	TK_1.1.3	1.1.5.1	Dyn. Rahmenbedingung	Verkehr			Anzahl Targets	2			
-	102	TK_1.1.3	1.1.5.2	Sequenz	Verkehr	Egofahrzeu						
	· 103	TK_1.1.3	1.1.5.2.1	Testschritt	Verkehr	Egofahrzeu	Initialwer	Startspur	Rampe			
	· 104	TK_1.1.3	1.1.5.2.2	Testschritt	Verkehr	Egofahrzeu	Initialwer	Startpunkt	160	m		Vor Beschleunigungsstreifenbeginn
	· 105	TK_1.1.3	1.1.5.2.3	Testschritt	Verkehr	Egofahrzeu	Initialwer	Funktion	ja			HAF-Funktion an/aus
	· 106	TK_1.1.3	1.1.5.2.4	Testschritt	Verkehr	Egofahrzeu	Initialwer	Geschwindigkeit	60	km/h		
	· 107	TK_1.1.3	1.1.5.2.5	Testschritt	Verkehr	Egofahrzeu	Zielwert	Spurwechsel	190	m		Nach Beschleunigungsstreifenbeginn
ΙL	· 108	TK_1.1.3	1.1.5.2.6	Testschritt	Verkehr	Egofahrzeu	Initialwer	Endpunkt	300	m		Nach Beschleunigungsstreifenbeginn
-	109	TK_1.1.3	1.1.5.3	Sequenz	Verkehr	Target 1						
	· 110	TK_1.1.3	1.1.5.3.1	Testschritt	Verkehr	Target 1	Initialwer	Startspur	1			
	· 111	TK_1.1.3	1.1.5.3.2	Testschritt	Verkehr	Target 1	Initialwer	Beschleunigung	0	m/s^2		
	· 112	TK_1.1.3	1.1.5.3.3	Testschritt	Verkehr	Target 1	Initialwer	Geschwindigkeit	90	km/h		
ΙL	· 113	TK_1.1.3	1.1.5.3.4	Testschritt	Verkehr	Target 1	Zustand	Startpunkt Spurwechsel Ego	240	m		Nach Beschleunigungsstreifenbeginn
Ē	114	TK_1.1.3	1.1.5.4	Sequenz	Verkehr	Target 2						
T	· 115	TK_1.1.3	1.1.5.4.1	Testschritt	Verkehr	Target 2	Initialwer	Startspur	1			
	· 116	TK_1.1.3	1.1.5.4.2	Testschritt	Verkehr	Target 2	Initialwer	Beschleunigung	0	m/s^2		
	· 117	TK_1.1.3	1.1.5.4.3	Testschritt	Verkehr	Target 2	Initialwer	Geschwindigkeit	90	km/h		
LL	· 118	TK_1.1.3	1.1.5.4.4	Testschritt	Verkehr	Target 2	Zustand	Abstand	100	m		zu Target 1

Concept "TestAssist" Hardware

Tool "TestAssist"

- Planning scenarios for each vehicle (Target, Master, Slave 1 and 2)
- A high accurate map is used (OpenDrive)
- Simulation of planned scenarios with moving vehicles useful for:
 - Briefing test drivers
 - Optimizing the test case
- Definition of the test case is saved in a "json" file
- Positioning & moving data from a test run are saved in a "Logging" file (10 to 20ms step)
- Replaying of test runs and comparison real vs. planned test cases
 - \rightarrow Related to absolute positions based on topographical surroundings

11

Tool "Testmanager" IfF TUBS

- Tool-Chain for the observance of test parameters and precise test execution in reality
- Planning and Definition of complex highway scenarios
- Test Instructions for a high precise execution
- Evaluation of run test-cases [Quality-Index]
- Visualization via mobile device or Car-PC
- No additional hardware needed in object vehicles
- Based on LIDAR-Sensors and WLAN Communication
 - \rightarrow Related to relative positions of object vehicles

- The simulation environment consists of models that generate signals for input over time or receive them as output of the system under Test (SuT)
- Open loop vs. closed loop:
 - Closed loop considers feedback of the SuT
- Virtualization of the outer environment is utilized to test the SuT

Simulation environment

- Continuous testing describes

 a method which aims to give
 early feedback about software
 development from source
 code level to product level
- Automated execution of
 - Software build
 - Tests
 - Analysis
 - Reporting to stakeholders

September 19th & 20th, 2018

- By this approach early feedback could be given to developers
- Failures could be localized easier
- Real vehicle testing is done only with high mature software

Simulation: Sensor Modelling

Project Ko-HAF

Statistical Approach

Object Lists

Low-Level Sensor Models

High-Level Sensor Models

- Sensor specific i.e. Point Cloud
- Ray Tracing Approach

Simulation: Validation of Sensor Models

Visit our Simulation Demo on the Main Floor

September 19th & 20th, 2018

Ko-HAF – Highly Automated Driving – Validation and Test

Simulation: Co-Simulation

Simulation: Prototype-in-the-Loop

Project Ko-HAF

Assessment of Real World Data

Project Ko-HAF

Assessment of Real World Data

Which requirements are placed on the HAF?

- Requirements linked to Ko-HAF project goals
- HAF has to be...
 - ...safe
 - ...efficient
 - ...comfortable,

while performing functions at speed up to 130 km/h on highways.

Requirements Analysis

How to ensure that the HAF meets the requirements?

Assessment of Real World Data

- Based on the Use-Cases and Base-Scenarios, a Scenario-Catalog had to be defined
- This led to a Test-Catalog with Test-Cases containing
 - Specific parameters
 - Maneuvers
 - Distributions
 - and relevant characteristics
- The Test-Cases were assigned to different test environments
 - Simulation
 - Proving ground
 - Public road
- → Matching these Test-Cases and the Requirements, a variety of Evaluation Subjects were defined

Definition of Evaluation Subjects

Assessment of Real World Data

Which criteria to use for a HAF?

- A jointly agreed Logging was developed with all Partners involved
- Using a standardized "json" architecture
- Contents of the file are based on the Evaluation Subjects
- Since all Partners developing own HAF-Vehicles, focus on quality and quantity criteria
 - Technical maturity of the HAF
 - Reliability of the functions
 - No benchmark

Modelling of Evaluation Criteria

Example from the Logfile

Werte - Eventeintrag	JSON Datei - Kurzname	Einheit					
Name	EventName	Text					
Zeitstempel	EreignisZeit	YYYY-MM-DD-HH:MM:SS.mmm					
Relativer km-Stand	RelativerKmStand	Meter					
Spur-ID	SpurId	In Ko-HAF keine absolute , sondern relative Nummerierung					
		der Spuren. Details in Dokument Ko-					
		HAF_Spezifikation_Kommunikationsschnittstellen.docx:					
		https://service.projectplace.com/pp/pp.cgi/r1232389708					
		Seite 19 (siehe oberer Abschnitt)					
Position	GpsPositionLat	ms arc					
	GpsPositionLong	ms arc					
Message	EventMessage	Freitext					

How to rate the HAF?

The Ko-HAF Logfile contains a variety of parameters such as...

Assessment of Real World Data

- Local ID
- Lane ID
- Event time
- GPS position (long; lat)
- **Event Message**
- Ego speed
- Vehicle position arround the Ego

etc...

Deduction of

Parameters

ng

Which test environment fits best to HAF?

s Etiedber

ad Homburger Kreu

3 Niedes-Eschi

Frankfurt am Main

Assessment of Real World Data

 After the assignment of the Test-Cases, testing took place in simulation, on proving ground and on public road

S Frankfurk/A

AS OL -Kaisert

S Of -Taunusring

Offenbache

Kreuz

- With conclusion of the testing, each partner is providing their logfiles for evaluation
- The loggingdata of each test environment is concentrated at the Ko-HAF Safety Server

Ko-HAF Test area on public road

Eschborne Drejeck

> Nordwestkreuz Frankfurt

Nostkrouz Frankfu

rankfurte

Krouz

Testaebiet

Testing /

Logging

Assessment of Real World Data

Has the HAF met the requirements?

- After completing the development and testing in Ko-HAF, the Evaluation will take place following the final presentation
- As determined by the assessment process, the evaluation is performed on the basis of the jointly agreed logging data
- → The aim of the Evaluation is to prove whether the HAF was able to fulfill all requirements and to recommend actions for further developments

Evaluation / Recommended actions

Thank you for your attention!

The contents of this presentation (including but not limited to texts, images, photos, logos, etc.) and the presentation itself are protected by intellectual property rights. They were created by the project consortium Ko-HAF and/or licenced by the project consortium. Any disclosure, modification, publication, translation, multiplication of the presentation and/or its contents is only permitted with a prior written authorisation by the consortium. © Copyright Project Ko-HAF, 2018, Contact: projektbuero@ko-haf.de

