

Development of Automated Driving Functions

Dr. Stefan Berger, Opel Automobile GmbH

Outline

- Highly automated driving (SAE Level 3)
- Development of driving functions
- Scenarios and demo rides on test track

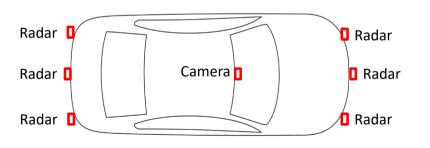
Levels of Automated Driving

→ Driver	Permanent longitudinal AND lateral guide	Permanent Iongitudinal OR lateral guide	Permanent monitoring	No permanent monitoring / driver prepared to take over	No driver necessary in specific application	No driver necessary
	SAE Level 0	SAE Level 1	SAE Level 2	SAE Level 3	SAE Level 4	SAE Level 5
\checkmark				Longitudinal and lateral guide in specific application /	System can manage any	
Vehicle	No interfering vehicle system	System takes over the other function	Longitudinal and lateral guide in special application	Detects system limits → Take- over command with safety time	situation automatically in specific application	The system can manage any situation automatically
	Only the driver	Assisted	Partly automated	Highly automated	Fully automated arce: Verband der Autom	Driver-less

Project Ko-HAF

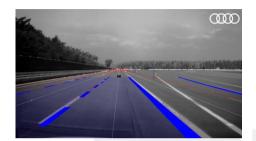
SAE Level 3 – Highly Automated Driving

- Driver is prepared for take-over when systems limits occur
- Main objectives of Ko-HAF demonstrator vehicles:
 - Automated longitudinal and lateral control while driving
 - Watch out for system limits
 - Tell driver to take over control before system limit is reached (HMI, WP3)


Highly Automated Driving on <u>Highways</u>


- Objective: Drive on highway from A to B with preferred set speed and without collision
- Problem: "Obstacles" on the road: speed limits, slower vehicles, traffic jams, road works, break-down vehicles, ...
- Automated Driving Functions can be divided into 3 tasks:
 Sense Plan Act

Sensors: camera, radar, lidar, ...



Ko-HAF Partner 2:

KOOPERATIVES HOCHAUTOMATISIERTES FAHREN

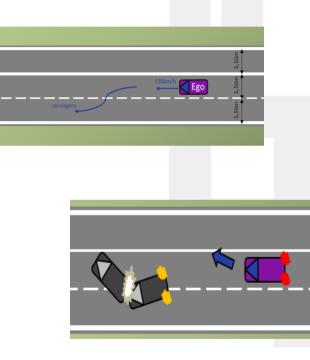
- Environmental detection:
 Lane markings, objects (static + dynamic), landmarks
- Lane markings → lateral localization (WP2)
- Landmarks (= e. g. traffic signs, bridges) → longitudinal localization
- Static objects → road hazards (exchange information via Safety Server, WP1)
- Dynamic objects (= other traffic participants) → driving strategy
- Gaps in neighboring lanes → maneuver planning
- Not only sense current environment but also predict future motion of dynamic objects
 - → Tomorrow: Presentation on motion prediction, 12:00, D. Augustin, Opel

September 19th & 20th, 2018

💷 🖊 Tgt 1

8

Determine possible driving maneuvers, e.g.

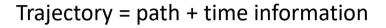

Lane Change Left, LCL

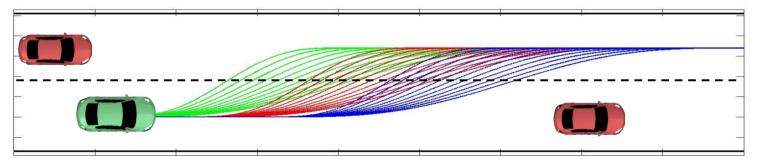
Sense – Plan – Act

- Lane Change Right, LCR
- Keep Lane, KL

Decision making

- Cost functions
- Low cost for legal maneuvers (e.g. changing lane)
- High cost for illegal maneuvers (crossing solid line)
- Very high cost for collision-afflicted maneuvers
- \rightarrow Choose maneuver with lowest cost




Project Ko-HAF

Trajectory Planning

What is the best trajectory for the lane change?

- Trajectory Planning
 - Calculate several trajectories
 - Calculate maximum accelerations (longitudinal and lateral)
 - Check for physical limits
 - Check for collisions with other objects
 - Include motion prediction of other traffic participants
 - Add cost function with penalty for low comfort, too small distances to neighboring vehicles, etc.
 - Choose best trajectory (with lowest cost)

→ Tomorrow: Presentation on motion planning, 12:30, B. Reuber, IfF

Sense – Plan – Act COOPERATIVES HOCHAUTOMATISIERTES FAHRE **Highway Simulation** Planned Trajectory (next 1.5 s) Car Safety distance 0.9 s Safety distance 1.8 s 50 100 Current speed = 60km/h Maximum speed = 100 km/h Ego car

- Trajectory Control
 - Control concepts for engine, steering, brake

Safety Concept – What to do when system failures occur?

- No driver reaction after take-over request
- Sensor fault due to heavy rain, snowfall, fog
- Digital map outdated
- System limits reached (e.g. roadworks, accident, earthquake)
- Unexpected motion of other traffic participants
- \rightarrow Minimal risk maneuvers, fail-safe trajectories

→ Tomorrow: Presentation on minimal risk maneuvers, 13:00, Th. Leonhardt, Audi

September 19th & 20th, 2018

13

Fail-safe trajectories are collision-free with respect to any feasible future behavior of obstacles

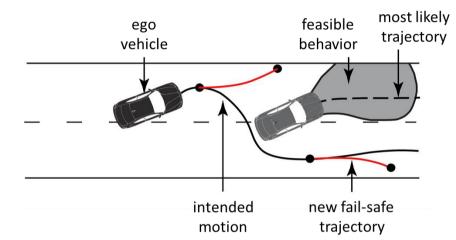
Ensure that the ego vehicle is able to execute a fail-safe trajectory at any time

intended

motion

- trajectory
- feasible other ego most likely vehicle vehicle behavior

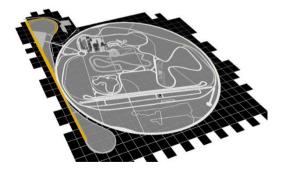
fail-safe


trajectory

Fail-safe trajectories

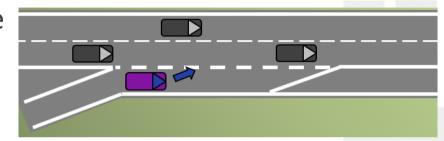
Sense – Plan – Act

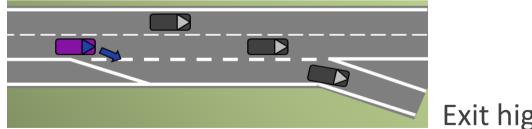
Fail-safe trajectories


- When traffic participants deviate from predicted motion, the ego vehicle has two options:
 - Execute previous fail-safe trajectory
 - Find a new pair of an intended motion and fail-safe trajectory

Scenarios and Demo Rides on Test Track

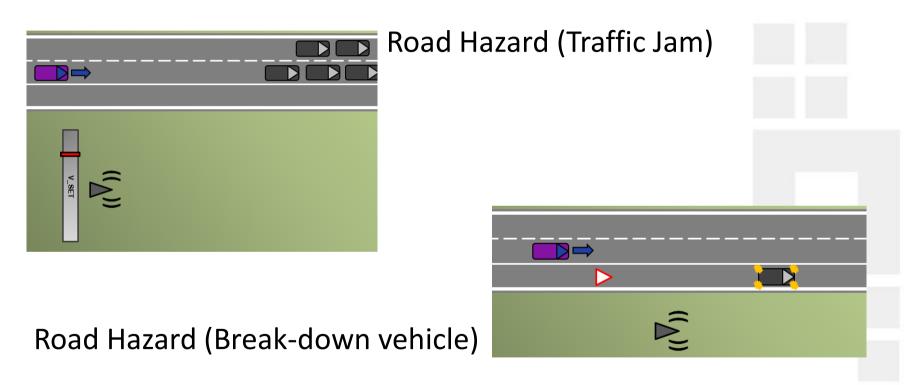
"Lange Gerade" ("Straight")





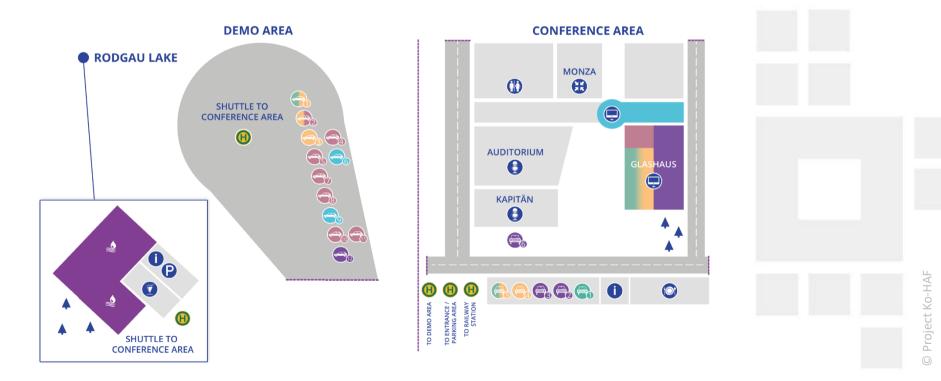
Scenario catalogue

Enter highway and merge



Exit highway

Scenario catalogue



September 19th & 20th, 2018

Demonstration Activities

Driving Demos

DEMO AREA

#	Titel				
1	LTE measurements and prediction				
2	Cooperative HAD from Motorway Entry to Exit				
3	Visual Localization & Preaggregation				
4	HAD-Functions in public traffic				
5	Tactical Decision-Making for HAD				
6	Testmanager - A Tool for reproducible Test Execution				
7	Highway Drive and Hazard Detection				
8	Autonomous Reaction to Safety-Critical Situations on Highways				
9	Testtool				
10	HAD-Functions: Merging, Strategic Handling of break down vehicles, MRM				
11	HAD-Functions in public traffic				
12	Wizard-of-Oz Vehicle for Automated Driving Experience				

Thank you for your attention!

The contents of this presentation (including but not limited to texts, images, photos, logos, etc.) and the presentation itself are protected by intellectual property rights. They were created by the project consortium Ko-HAF and/or licenced by the project consortium. Any disclosure, modification, publication, translation, multiplication of the presentation and/or its contents is only permitted with a prior written authorisation by the consortium. © Copyright Project Ko-HAF, 2018, Contact: projektbuero@ko-haf.de

